数据规整:聚合、合并、重塑和上传文件数据到数据库

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
数据分析 6 数据规整:聚合、合并和重塑
在许多应⽤中,数据可能分散在许多⽂件或数据库中,存储的形式也不利于分析,应采⽤聚
合、合并、重塑数据的⽅法进⾏处理。
层次化索引
层次化索引(hierarchical indexing)是pandas的⼀项重要功能,它使你能在⼀个轴上拥有多
个(两个以上)索引级别。
In [9]: data = pd.Series(np.random.randn(9),
...: index=[['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'],
...: [1, 2, 3, 1, 3, 1, 2, 2, 3]])
In [10]: data
Out[10]:
a 1 -0.204708
2 0.478943
3 -0.519439
b 1 -0.555730
3 1.965781
c 1 1.393406
2 0.092908
d 2 0.281746
3 0.769023
dtype: float64
In [12]: data['b']
Out[12]:
1 -0.555730
3 1.965781
dtype: float64
In [13]: data['b':'c']
Out[13]:
b 1 -0.555730
3 1.965781
c 1 1.393406
2 0.092908
dtype: float64
In [14]: data.loc[['b', 'd']]
Out[14]:
b 1 -0.555730
3 1.965781
d 2 0.281746
3 0.769023
dtype: float64
“内层”中进⾏选取
In [15]: data.loc[:, 2]
Out[15]:
a 0.478943
c 0.092908
d 0.281746
dtype: float64
In [16]: data.unstack()
Out[16]:
1 2 3
a -0.204708 0.478943 -0.519439
b -0.555730 NaN 1.965781
c 1.393406 0.092908 NaN
d NaN 0.281746 0.769023
unstack的逆运算是stack
In [17]: data.unstack().stack()
Out[17]:
a 1 -0.204708
2 0.478943
3 -0.519439
b 1 -0.555730
3 1.965781
c 1 1.393406
2 0.092908
d 2 0.281746
3 0.769023
dtype: float64
对于⼀个DataFrame,每条轴都可以有分层索引
In [18]: frame = pd.DataFrame(np.arange(12).reshape((4, 3)),
....: index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
....: columns=[['Ohio', 'Ohio', 'Colorado'],
....: ['Green', 'Red', 'Green']])
In [19]: frame
Out[19]:
Ohio Colorado
Green Red Green
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
In [20]: frame.index.names = ['key1', 'key2']
In [21]: frame.columns.names = ['state', 'color']
In [22]: frame
Out[22]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
有了部分列索引,因此可以轻松选取列分组
In [23]: frame['Ohio']
Out[23]:
color Green Red
key1 key2
a 1 0 1
2 3 4
b 1 6 7
2 9 10
重排与分级排序
调整某条轴上各级别的顺序
In [24]: frame.swaplevel('key1', 'key2')
Out[24]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
2 a 3 4 5
1 b 6 7 8
2 b 9 10 11
⽽sort_index则根据单个级别中的值对数据进⾏排序。交换级别时,常常也会⽤到
sort_index,这样最终结果就是按照指定顺序进⾏字⺟排序了
In [25]: frame.sort_index(level=1)
Out[25]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
b 1 6 7 8
a 2 3 4 5
b 2 9 10 11
In [26]: frame.swaplevel(0, 1).sort_index(level=0)
Out[26]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
b 6 7 8
2 a 3 4 5
b 9 10 11
根据级别汇总统计
对DataFrame和Series的描述和汇总统计都有⼀个level选项,它⽤于指定在某条轴上求和的级
别。
In [27]: frame.sum(level='key2')
Out[27]:
state Ohio Colorado
color Green Red Green
key2
1 6 8 10
2 12 14 16
In [28]: frame.sum(level='color', axis=1)
Out[28]:
color Green Red
key1 key2
a 1 2 1
2 8 4
b 1 14 7
2 20 10
使⽤DataFrame的列进⾏索引
将DataFrame的⼀个或多个列当做⾏索引来⽤,或者可能希望将⾏索引变成DataFrame的列
In [29]: frame = pd.DataFrame({'a': range(7), 'b': range(7, 0, -1),
....: 'c': ['one', 'one', 'one', 'two', 'two',
....: 'two', 'two'],
....: 'd': [0, 1, 2, 0, 1, 2, 3]})
In [30]: frame
Out[30]:
a b c d
0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
3 3 4 two 0
4 4 3 two 1
5 5 2 two 2
6 6 1 two 3
In [31]: frame2 = frame.set_index(['c', 'd'])
In [32]: frame2
Out[32]:
a b
c d
one 0 0 7
1 1 6
2 2 5
two 0 3 4
1 4 3
2 5 2
3 6 1
默认情况下,那些列会从DataFrame中移除,但也可以将其保留下来
In [33]: frame.set_index(['c', 'd'], drop=False)
Out[33]:
a b c d
c d
one 0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
two 0 3 4 two 0
1 4 3 two 1
2 5 2 two 2
3 6 1 two 3
reset_index的功能跟set_index刚好相反,层次化索引的级别会被转移到列⾥⾯
In [34]: frame2.reset_index()
Out[34]:
c d a b
0 one 0 0 7
1 one 1 1 6
2 one 2 2 5
3 two 0 3 4
4 two 1 4 3
5 two 2 5 2
6 two 3 6 1
合并数据集
pandas对象中的数据可以通过⼀些⽅式进⾏合并
pandas.merge可根据⼀个或多个键将不同DataFrame中的⾏连接起来。SQL或其他关系型数
据库的⽤户对此应该会⽐较熟悉,因为它实现的就是数据库的join操作。
pandas.concat可以沿着⼀条轴将多个对象堆叠到⼀起。
实例⽅法combine_first可以将重复数据拼接在⼀起,⽤⼀个对象中的值填充另⼀个对象中的
缺失值
数据库⻛格的DataFrame合并
数据集的合并(merge)或连接(join)运算是通过⼀个或多个键将⾏连接起来的
In [35]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
....: 'data1': range(7)})
In [36]: df2 = pd.DataFrame({'key': ['a', 'b', 'd'],
....: 'data2': range(3)})
In [37]: df1
Out[37]:
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b
In [38]: df2
Out[38]:
data2 key
0 0 a
1 1 b
2 2 d
这是⼀种多对⼀的合并
In [39]: pd.merge(df1, df2)
Out[39]:
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
没有指明要⽤哪个列进⾏连接。如果没有指定,merge就会将重叠列的列名当做键。最好明确
指定⼀下
In [40]: pd.merge(df1, df2, on='key')
Out[40]:
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
如果两个对象的列名不同,也可以分别进⾏指定
In [41]: df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
....: 'data1': range(7)})
In [42]: df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'],
....: 'data2': range(3)})
In [43]: pd.merge(df3, df4, left_on='lkey', right_on='rkey')
Out[43]:
data1 lkey data2 rkey
0 0 b 1 b
1 1 b 1 b
2 6 b 1 b
3 2 a 0 a
4 4 a 0 a
5 5 a 0 a
结果⾥⾯c和d以及与之相关的数据消失了。默认情况下,merge做的是“内连接”;结果中的键
是交集。其他⽅式还有”left”、”right”以及”outer”。外连接求取的是键的并集,组合了左连接
和右连接的效果
In [44]: pd.merge(df1, df2, how='outer')
Out[44]:
data1 key data2
0 0.0 b 1.0
1 1.0 b 1.0
2 6.0 b 1.0
3 2.0 a 0.0
4 4.0 a 0.0
5 5.0 a 0.0
6 3.0 c NaN
7 NaN d 2.0
多对多的合并
In [45]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
....: 'data1': range(6)})
In [46]: df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'],
....: 'data2': range(5)})
In [47]: df1
Out[47]:
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 b
In [48]: df2
Out[48]:
data2 key
0 0 a
1 1 b
2 2 a
3 3 b
4 4 d
In [49]: pd.merge(df1, df2, on='key', how='left')
Out[49]:
data1 key data2
0 0 b 1.0
1 0 b 3.0
2 1 b 1.0
3 1 b 3.0
4 2 a 0.0
5 2 a 2.0
6 3 c NaN
7 4 a 0.0
8 4 a 2.0
9 5 b 1.0
10 5 b 3.0
多对多连接,由于左边的DataFrame有3个”b”⾏,右边的有2个,所以最终结果中就有6
个”b”⾏
In [50]: pd.merge(df1, df2, how='inner')
Out[50]:
data1 key data2
0 0 b 1
1 0 b 3
2 1 b 1
3 1 b 3
4 5 b 1
5 5 b 3
6 2 a 0
7 2 a 2
8 4 a 0
9 4 a 2
根据多个键进⾏合并
In [51]: left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],
....: 'key2': ['one', 'two', 'one'],
....: 'lval': [1, 2, 3]})
In [52]: right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
....: 'key2': ['one', 'one', 'one', 'two'],
....: 'rval': [4, 5, 6, 7]})
In [53]: pd.merge(left, right, on=['key1', 'key2'], how='outer')
Out[53]:
key1 key2 lval rval
0 foo one 1.0 4.0
1 foo one 1.0 5.0
2 foo two 2.0 NaN
3 bar one 3.0 6.0
4 bar two NaN 7.0
重复列名的处理
In [54]: pd.merge(left, right, on='key1')
Out[54]:
key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
In [55]: pd.merge(left, right, on='key1', suffixes=('_left', '_right'))
Out[55]:
key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
索引上的合并
连接键位于其索引中。在这种情况下,你可以传⼊left_index=True或right_index=True(或两
个都传)以说明索引应该被⽤作连接键
In [56]: left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],
....: 'value': range(6)})
In [57]: right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])
In [58]: left1
Out[58]:
key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5
In [59]: right1
Out[59]:
group_val
a 3.5
b 7.0
In [60]: pd.merge(left1, right1, left_on='key', right_index=True)
Out[60]:
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0
层次化索引的数据, 索引的合并默认是多键合并
In [62]: lefth = pd.DataFrame({'key1': ['Ohio', 'Ohio', 'Ohio',
....: 'Nevada', 'Nevada'],
....: 'key2': [2000, 2001, 2002, 2001, 2002],
....: 'data': np.arange(5.)})
In [63]: righth = pd.DataFrame(np.arange(12).reshape((6, 2)),
....: index=[['Nevada', 'Nevada', 'Ohio', 'Ohio',
....: 'Ohio', 'Ohio'],
....: [2001, 2000, 2000, 2000, 2001, 2002]],
....: columns=['event1', 'event2'])
In [64]: lefth
Out[64]:
data key1 key2
0 0.0 Ohio 2000
1 1.0 Ohio 2001
2 2.0 Ohio 2002
3 3.0 Nevada 2001
4 4.0 Nevada 2002
In [65]: righth
Out[65]:
event1 event2
Nevada 2001 0 1
2000 2 3
Ohio 2000 4 5
2000 6 7
2001 8 9
2002 10 11
必须以列表的形式指明⽤作合并键的多个列(注意⽤how=‘outer’对重复索引值的处理)
In [66]: pd.merge(lefth, righth, left_on=['key1', 'key2'], right_index=True)
Out[66]:
data key1 key2 event1 event2
0 0.0 Ohio 2000 4 5
0 0.0 Ohio 2000 6 7
1 1.0 Ohio 2001 8 9
2 2.0 Ohio 2002 10 11
3 3.0 Nevada 2001 0 1
In [67]: pd.merge(lefth, righth, left_on=['key1', 'key2'],
....: right_index=True, how='outer')
Out[67]:
data key1 key2 event1 event2
0 0.0 Ohio 2000 4.0 5.0
0 0.0 Ohio 2000 6.0 7.0
1 1.0 Ohio 2001 8.0 9.0
2 2.0 Ohio 2002 10.0 11.0
3 3.0 Nevada 2001 0.0 1.0
4 4.0 Nevada 2002 NaN NaN
4 NaN Nevada 2000 2.0 3.0
同时使⽤合并双⽅的索引
In [68]: left2 = pd.DataFrame([[1., 2.], [3., 4.], [5., 6.]],
....: index=['a', 'c', 'e'],
....: columns=['Ohio', 'Nevada'])
In [69]: right2 = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]],
....: index=['b', 'c', 'd', 'e'],
....: columns=['Missouri', 'Alabama'])
In [70]: left2
Out[70]:
Ohio Nevada
a 1.0 2.0
c 3.0 4.0
e 5.0 6.0
In [71]: right2
Out[71]:
Missouri Alabama
b 7.0 8.0
c 9.0 10.0
d 11.0 12.0
e 13.0 14.0
In [72]: pd.merge(left2, right2, how='outer', left_index=True,
right_index=True)
Out[72]:
Ohio Nevada Missouri Alabama
a 1.0 2.0 NaN NaN
b NaN NaN 7.0 8.0
c 3.0 4.0 9.0 10.0
d NaN NaN 11.0 12.0
e 5.0 6.0 13.0 14.0
join实例⽅法,能实现按索引合并
In [73]: left2.join(right2, how='outer')
Out[73]:
Ohio Nevada Missouri Alabama
a 1.0 2.0 NaN NaN
b NaN NaN 7.0 8.0
c 3.0 4.0 9.0 10.0
d NaN NaN 11.0 12.0
e 5.0 6.0 13.0 14.0
In [74]: left1.join(right1, on='key')
Out[74]:
key value group_val
0 a 0 3.5
1 b 1 7.0
2 a 2 3.5
3 a 3 3.5
4 b 4 7.0
5 c 5 NaN
向join传⼊⼀组DataFrame
In [75]: another = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [16., 17.]],
....: index=['a', 'c', 'e', 'f'],
....: columns=['New York',
'Oregon'])
In [76]: another
Out[76]:
New York Oregon
a 7.0 8.0
c 9.0 10.0
e 11.0 12.0
f 16.0 17.0
In [77]: left2.join([right2, another])
Out[77]:
Ohio Nevada Missouri Alabama New York Oregon
a 1.0 2.0 NaN NaN 7.0 8.0
c 3.0 4.0 9.0 10.0 9.0 10.0
e 5.0 6.0 13.0 14.0 11.0 12.0
In [78]: left2.join([right2, another], how='outer')
Out[78]:
Ohio Nevada Missouri Alabama New York Oregon
a 1.0 2.0 NaN NaN 7.0 8.0
b NaN NaN 7.0 8.0 NaN NaN
c 3.0 4.0 9.0 10.0 9.0 10.0
d NaN NaN 11.0 12.0 NaN NaN
e 5.0 6.0 13.0 14.0 11.0 12.0
f NaN NaN NaN NaN 16.0 17.0
轴向连接
数据合并运算也被称作连接(concatenation)、绑定(binding)或堆叠(stacking)
In [79]: arr = np.arange(12).reshape((3, 4))
In [80]: arr
Out[80]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [81]: np.concatenate([arr, arr], axis=1)
Out[81]:
array([[ 0, 1, 2, 3, 0, 1, 2, 3],
[ 4, 5, 6, 7, 4, 5, 6, 7],
[ 8, 9, 10, 11, 8, 9, 10, 11]])
pandas的concat函数合并操作
In [82]: s1 = pd.Series([0, 1], index=['a', 'b'])
In [83]: s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])
In [84]: s3 = pd.Series([5, 6], index=['f', 'g'])
调⽤concat可以将值和索引粘合在⼀起
In [85]: pd.concat([s1, s2, s3])
Out[85]:
a 0
b 1
c 2
d 3
e 4
f 5
g 6
dtype: int64
传⼊axis=1,则结果就会变成⼀个DataFrame(axis=1是列)
In [86]: pd.concat([s1, s2, s3], axis=1)
Out[86]:
0 1 2
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 2.0 NaN
d NaN 3.0 NaN
e NaN 4.0 NaN
f NaN NaN 5.0
g NaN NaN 6.0
In [87]: s4 = pd.concat([s1, s3])
In [88]: s4
Out[88]:
a 0
b 1
f 5
g 6
dtype: int64
In [89]: pd.concat([s1, s4], axis=1)
Out[89]:
0 1
a 0.0 0
b 1.0 1
f NaN 5
g NaN 6
In [90]: pd.concat([s1, s4], axis=1, join='inner')
Out[90]:
0 1
a 0 0
b 1 1
In [91]: pd.concat([s1, s4], axis=1, join_axes=[['a', 'c', 'b', 'e']])
Out[91]:
0 1
a 0.0 0.0
c NaN NaN
b 1.0 1.0
e NaN NaN
参与连接的⽚段在结果中区分不开。假设你想要在连接轴上创建⼀个层次化索引。使⽤keys参
数即可达到这个⽬的
In [92]: result = pd.concat([s1, s1, s3], keys=['one','two', 'three'])
In [93]: result
Out[93]:
one a 0
b 1
two a 0
b 1
three f 5
g 6
dtype: int64
In [94]: result.unstack()
Out[94]:
a b f g
one 0.0 1.0 NaN NaN
two 0.0 1.0 NaN NaN
three NaN NaN 5.0 6.0
如果沿着axis=1对Series进⾏合并,则keys就会成为DataFrame的列头
In [95]: pd.concat([s1, s2, s3], axis=1, keys=['one','two', 'three'])
Out[95]:
one two three
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 2.0 NaN
d NaN 3.0 NaN
e NaN 4.0 NaN
f NaN NaN 5.0
g NaN NaN 6.0
In [96]: df1 = pd.DataFrame(np.arange(6).reshape(3, 2), index=['a', 'b', 'c'],
....: columns=['one', 'two'])
In [97]: df2 = pd.DataFrame(5 + np.arange(4).reshape(2, 2), index=['a', 'c'],
....: columns=['three', 'four'])
In [98]: df1
Out[98]:
one two
a 0 1
b 2 3
c 4 5
In [99]: df2
Out[99]:
three four
a 5 6
c 7 8
In [100]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'])
Out[100]:
level1 level2
one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
In [101]: pd.concat({'level1': df1, 'level2': df2}, axis=1)
Out[101]:
level1 level2
one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
⽤names参数命名创建的轴级别
In [102]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'],
.....: names=['upper', 'lower'])
Out[102]:
upper level1 level2
lower one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
DataFrame的⾏索引不包含任何相关数据, 传⼊ignore_index=True
In [103]: df1 = pd.DataFrame(np.random.randn(3, 4), columns=['a', 'b', 'c',
'd'])
In [104]: df2 = pd.DataFrame(np.random.randn(2, 3), columns=['b', 'd', 'a'])
In [105]: df1
Out[105]:
a b c d
0 1.246435 1.007189 -1.296221 0.274992
1 0.228913 1.352917 0.886429 -2.001637
2 -0.371843 1.669025 -0.438570 -0.539741
In [106]: df2
Out[106]:
b d a
0 0.476985 3.248944 -1.021228
1 -0.577087 0.124121 0.302614
In [107]: pd.concat([df1, df2], ignore_index=True)
Out[107]:
a b c d
0 1.246435 1.007189 -1.296221 0.274992
1 0.228913 1.352917 0.886429 -2.001637
2 -0.371843 1.669025 -0.438570 -0.539741
3 -1.021228 0.476985 NaN 3.248944
4 0.302614 -0.577087 NaN 0.124121
合并重叠数据
索引全部或部分重叠的两个数据集
In [108]: a = pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
.....: index=['f', 'e', 'd', 'c', 'b', 'a'])
In [109]: b = pd.Series(np.arange(len(a), dtype=np.float64),
.....: index=['f', 'e', 'd', 'c', 'b', 'a'])
In [110]: b[-1] = np.nan
In [111]: a
Out[111]:
f NaN
e 2.5
d NaN
c 3.5
b 4.5
a NaN
dtype: float64
In [112]: b
Out[112]:
f 0.0
e 1.0
d 2.0
c 3.0
b 4.0
a NaN
dtype: float64
In [113]: np.where(pd.isnull(a), b, a)
Out[113]: array([ 0. , 2.5, 2. , 3.5, 4.5, nan])
此语句实现⼀样的功能
In [114]: b[:-2].combine_first(a[2:])
Out[114]:
a NaN
b 4.5
c 3.0
d 2.0
e 1.0
f 0.0
dtype: float64
对于DataFrame,combine_first⾃然也会在列上做同样的事情,因此你可以将其看做:⽤传
递对象中的数据为调⽤对象的缺失数据“打补丁”
In [115]: df1 = pd.DataFrame({'a': [1., np.nan, 5., np.nan],
.....: 'b': [np.nan, 2., np.nan, 6.],
.....: 'c': range(2, 18, 4)})
In [116]: df2 = pd.DataFrame({'a': [5., 4., np.nan, 3., 7.],
.....: 'b': [np.nan, 3., 4., 6., 8.]})
In [117]: df1
Out[117]:
a b c
0 1.0 NaN 2
1 NaN 2.0 6
2 5.0 NaN 10
3 NaN 6.0 14
In [118]: df2
Out[118]:
a b
0 5.0 NaN
1 4.0 3.0
2 NaN 4.0
3 3.0 6.0
4 7.0 8.0
In [119]: df1.combine_first(df2)
Out[119]:
a b c
0 1.0 NaN 2.0
1 4.0 2.0 6.0
2 5.0 4.0 10.0
3 3.0 6.0 14.0
4 7.0 8.0 NaN
重塑和轴向旋转
⽤于重新排列表格型数据的基础运算。这些函数也称作重塑(reshape)或轴向旋转(pivot)
运算
重塑层次化索引
stack:将数据的列“旋转”为⾏
unstack:将数据的⾏“旋转”为列
In [120]: data = pd.DataFrame(np.arange(6).reshape((2, 3)),
.....: index=pd.Index(['Ohio','Colorado'],
name='state'),
.....: columns=pd.Index(['one', 'two', 'three'],
.....: name='number'))
In [121]: data
Out[121]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5
对该数据使⽤stack⽅法即可将列转换为⾏,得到⼀个Series
In [122]: result = data.stack()
In [123]: result
Out[123]:
state number
Ohio one 0
two 1
three 2
Colorado one 3
two 4
three 5
dtype: int64
对于⼀个层次化索引的Series,你可以⽤unstack将其重排为⼀个DataFrame:
In [124]: result.unstack()
Out[124]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5
默认情况下,unstack操作的是最内层(stack也是如此)。传⼊分层级别的编号或名称即可对
其它级别进⾏unstack操作
In [125]: result.unstack(0)
Out[125]:
state Ohio Colorado
number
one 0 3
two 1 4
three 2 5
In [126]: result.unstack('state')
Out[126]:
state Ohio Colorado
number
one 0 3
two 1 4
three 2 5
将“⻓格式”旋转为“宽格式”
多个时间序列数据通常是以所谓的“⻓格式”(long)或“堆叠格式”(stacked)存储在数据库和
CSV中的。我们先加载⼀些示例数据,做⼀些时间序列规整和数据清洗
In [139]: data = pd.read_csv('examples/macrodata.csv')
In [140]: data.head()
Out[140]:
year quarter realgdp realcons realinv realgovt realdpi cpi \
0 1959.0 1.0 2710.349 1707.4 286.898 470.045 1886.9 28.98
1 1959.0 2.0 2778.801 1733.7 310.859 481.301 1919.7 29.15
2 1959.0 3.0 2775.488 1751.8 289.226 491.260 1916.4 29.35
3 1959.0 4.0 2785.204 1753.7 299.356 484.052 1931.3 29.37
4 1960.0 1.0 2847.699 1770.5 331.722 462.199 1955.5 29.54
m1 tbilrate unemp pop infl realint
0 139.7 2.82 5.8 177.146 0.00 0.00
1 141.7 3.08 5.1 177.830 2.34 0.74
2 140.5 3.82 5.3 178.657 2.74 1.09
3 140.0 4.33 5.6 179.386 0.27 4.06
4 139.6 3.50 5.2 180.007 2.31 1.19
In [141]: periods = pd.PeriodIndex(year=data.year, quarter=data.quarter,
.....: name='date')
In [142]: columns = pd.Index(['realgdp', 'infl', 'unemp'], name='item')
In [143]: data = data.reindex(columns=columns)
In [144]: data.index = periods.to_timestamp('D', 'end')
In [145]: ldata = data.stack().reset_index().rename(columns={0: 'value'})
不同的item值分别形成⼀列,date列中的时间戳则⽤作索引
# 前两个传递的值分别⽤作⾏和列索引,最后⼀个可选值则是⽤于填充DataFrame的数据列
In [147]: pivoted = ldata.pivot('date', 'item', 'value')
In [148]: pivoted
Out[148]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2
1960-06-30 0.14 2834.390 5.2
1960-09-30 2.70 2839.022 5.6
1960-12-31 1.21 2802.616 6.3
1961-03-31 -0.40 2819.264 6.8
1961-06-30 1.47 2872.005 7.0
... ... ... ...
2007-06-30 2.75 13203.977 4.5
2007-09-30 3.45 13321.109 4.7
2007-12-31 6.38 13391.249 4.8
2008-03-31 2.82 13366.865 4.9
2008-06-30 8.53 13415.266 5.4
2008-09-30 -3.16 13324.600 6.0
2008-12-31 -8.79 13141.920 6.9
2009-03-31 0.94 12925.410 8.1
2009-06-30 3.37 12901.504 9.2
2009-09-30 3.56 12990.341 9.6
[203 rows x 3 columns]
In [149]: ldata['value2'] = np.random.randn(len(ldata))
In [150]: ldata[:10]
Out[150]:
date item value value2
0 1959-03-31 realgdp 2710.349 0.523772
1 1959-03-31 infl 0.000 0.000940
2 1959-03-31 unemp 5.800 1.343810
3 1959-06-30 realgdp 2778.801 -0.713544
4 1959-06-30 infl 2.340 -0.831154
5 1959-06-30 unemp 5.100 -2.370232
6 1959-09-30 realgdp 2775.488 -1.860761
7 1959-09-30 infl 2.740 -0.860757
8 1959-09-30 unemp 5.300 0.560145
9 1959-12-31 realgdp 2785.204 -1.265934
如果忽略最后⼀个参数,得到的DataFrame就会带有层次化的列
In [151]: pivoted = ldata.pivot('date', 'item')
In [152]: pivoted[:5]
Out[152]:
value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 0.000940 0.523772 1.343810
1959-06-30 2.34 2778.801 5.1 -0.831154 -0.713544 -2.370232
1959-09-30 2.74 2775.488 5.3 -0.860757 -1.860761 0.560145
1959-12-31 0.27 2785.204 5.6 0.119827 -1.265934 -1.063512
1960-03-31 2.31 2847.699 5.2 -2.359419 0.332883 -0.199543
In [153]: pivoted['value'][:5]
Out[153]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2
将“宽格式”旋转为“⻓格式”
In [157]: df = pd.DataFrame({'key': ['foo', 'bar', 'baz'],
.....: 'A': [1, 2, 3],
.....: 'B': [4, 5, 6],
.....: 'C': [7, 8, 9]})
In [158]: df
Out[158]:
A B C key
0 1 4 7 foo
1 2 5 8 bar
2 3 6 9 baz
当使⽤pandas.melt,我们必须指明哪些列是分组指标。下⾯使⽤key作为唯⼀的分组指标
In [159]: melted = pd.melt(df, ['key'])
In [160]: melted
Out[160]:
key variable value
0 foo A 1
1 bar A 2
2 baz A 3
3 foo B 4
4 bar B 5
5 baz B 6
6 foo C 7
7 bar C 8
8 baz C 9
使⽤pivot,可以重塑回原来的样⼦
In [161]: reshaped = melted.pivot('key', 'variable', 'value')
In [162]: reshaped
Out[162]:
variable A B C
key
bar 2 5 8
baz 3 6 9
foo 1 4 7
因为pivot的结果从列创建了⼀个索引,⽤作⾏标签,我们可以使⽤reset_index将数据移回列
In [163]: reshaped.reset_index()
Out[163]:
variable key A B C
0 bar 2 5 8
1 baz 3 6 9
2 foo 1 4 7
指定列的⼦集,作为值的列
In [164]: pd.melt(df, id_vars=['key'], value_vars=['A', 'B'])
Out[164]:
key variable value
0 foo A 1
1 bar A 2
2 baz A 3
3 foo B 4
4 bar B 5
5 baz B 6
pandas.melt也可以不⽤分组指标
In [165]: pd.melt(df, value_vars=['A', 'B', 'C'])
Out[165]:
variable value
0 A 1
1 A 2
2 A 3
3 B 4
4 B 5
5 B 6
6 C 7
7 C 8
8 C 9
In [166]: pd.melt(df, value_vars=['key', 'A', 'B'])
Out[166]:
variable value
0 key foo
1 key bar
2 key baz
3 A 1
4 A 2
5 A 3
6 B 4
7 B 5
8 B 6

将文件里的信息上传到数据库

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
mysql --local-infile=1 -u root -p

create table ratings (
user_id int null,
movie_id int null,
ratings int null,
rating_time int null
)

-- 指定导入文件的位置
LOAD DATA local INFILE 'F:\\datasets\\movielens\\ratings.dat'
-- 导入到哪张表
INTO TABLE ratings
-- 字段分隔符用什么
FIELDS TERMINATED BY '::'
-- 双引号是括住字段
ENCLOSED BY '"'
-- 你用什么符号来区别换行
LINES TERMINATED BY '\n';

create table movies (
movie_id int null,
title varchar(256) null,
genres varchar(512) null
)

LOAD DATA local INFILE 'F:\\datasets\\movielens\\movies.dat'
INTO TABLE movies FIELDS TERMINATED BY '::' ENCLOSED BY '"' LINES TERMINATED BY '\n';

create table users (
user_id int null,
gender varchar(2) null,
age int null,
occupation int null,
zip_code varchar(128) null
);

LOAD DATA local INFILE 'F:\\datasets\\movielens\\users.dat'
INTO TABLE users FIELDS TERMINATED BY '::' ENCLOSED BY '"' LINES TERMINATED BY '\n';

* 1: "Under 18" < 18
* 18: "18-24" 18 <= < 25
* 25: "25-34" 25 <= < 35
* 35: "35-44" 35 <= < 45
* 45: "45-49" 45 <= <50
* 50: "50-55" 50 <= < 56
* 56: "56+" 56 <=

create table age_dict (
age_id int null,
age_min int null,
age_max int null
);

insert into age_dict (age_id, age_min, age_max) values(1, 0, 18);
insert into age_dict (age_id, age_min, age_max) values(18, 18, 25);
insert into age_dict (age_id, age_min, age_max) values(25, 25, 35);
insert into age_dict (age_id, age_min, age_max) values(35, 35, 45);
insert into age_dict (age_id, age_min, age_max) values(45, 45, 50);
insert into age_dict (age_id, age_min, age_max) values(50, 50, 56);
insert into age_dict (age_id, age_min, age_max) values(56, 56, 300);


- Occupation is chosen from the following choices:

* 0: "other" or not specified
* 1: "academic/educator"
* 2: "artist"
* 3: "clerical/admin"
* 4: "college/grad student"
* 5: "customer service"
* 6: "doctor/health care"
* 7: "executive/managerial"
* 8: "farmer"
* 9: "homemaker"
* 10: "K-12 student"
* 11: "lawyer"
* 12: "programmer"
* 13: "retired"
* 14: "sales/marketing"
* 15: "scientist"
* 16: "self-employed"
* 17: "technician/engineer"
* 18: "tradesman/craftsman"
* 19: "unemployed"
* 20: "writer"

create table occup_dict (
occup_id int null,
occup_title varchar(256) null
)

insert into occup_dict (occup_id, occup_title) values(0, 'other or not specified');
insert into occup_dict (occup_id, occup_title) values(1, 'academic/educator');
insert into occup_dict (occup_id, occup_title) values(2, 'artist');
insert into occup_dict (occup_id, occup_title) values(3, 'clerical/admin');
insert into occup_dict (occup_id, occup_title) values(4, 'college/grad student');
insert into occup_dict (occup_id, occup_title) values(5, 'customer service');
insert into occup_dict (occup_id, occup_title) values(6, 'doctor/health care');
insert into occup_dict (occup_id, occup_title) values(7, 'executive/managerial');
insert into occup_dict (occup_id, occup_title) values(8, 'farmer');
insert into occup_dict (occup_id, occup_title) values(9, 'homemaker');
insert into occup_dict (occup_id, occup_title) values(10, 'K-12 student');
insert into occup_dict (occup_id, occup_title) values(11, 'lawyer');
insert into occup_dict (occup_id, occup_title) values(12, 'programmer');
insert into occup_dict (occup_id, occup_title) values(13, 'retired');
insert into occup_dict (occup_id, occup_title) values(14, 'sales/marketing');
insert into occup_dict (occup_id, occup_title) values(15, 'scientist');
insert into occup_dict (occup_id, occup_title) values(16, 'self-employed');
insert into occup_dict (occup_id, occup_title) values(17, 'technician/engineer');
insert into occup_dict (occup_id, occup_title) values(18, 'tradesman/craftsman');
insert into occup_dict (occup_id, occup_title) values(19, 'unemployed');
insert into occup_dict (occup_id, occup_title) values(20, 'writer');

查询数据库里的信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
找出用户的性别、年龄、电影名、打分

select gender, age_dict.age_min, age_dict.age_max, title, ratings
from users, movies, ratings, age_dict
where users.user_id = ratings.user_id and
ratings.movie_id = movies.movie_id and
age_dict.age_id = users.age;

select a.gender, d.age_min, d.age_max, c.title, b.ratings
from users a inner join ratings b
on a.user_id = b.user_id
inner join movies c
on b.movie_id = c.movie_id
inner join age_dict d
on a.age = d.age_id;

查找不同性别的平均打分
select case when a.gender = 'F' then '女' else '男' end as 性别,
avg(b.ratings) as 平均打分
from users a inner join ratings b
on a.user_id = b.user_id
group by a.gender;

查询电影名的平均打分
select a.title, avg(b.ratings)
from movies a inner join ratings b
on a.movie_id = b.movie_id
group by a.title;

查询不同性别对电影的平均打分

select a.gender, c.title, avg(b.ratings)
from users a inner join ratings b
on a.user_id = b.user_id
inner join movies c
on c.movie_id = b.movie_id
group by a.gender, c.title
order by c.title
limit 3;

查询不同年龄段的电影平均评分,不分性别

set @rownum=0;

create table temp_result as
select @rownum:=@rownum+1 as rownum, CONCAT(c.age_min,'~',c.age_max) as 年龄段, d.title, avg(b.ratings) as 平均评分
from users a inner join ratings b
on a.user_id = b.user_id
inner join age_dict c
on a.age = c.age_id
inner join movies d
on d.movie_id = b.movie_id
group by c.age_min, c.age_max, d.title;



不同职业的电影平均得分,要分性别
select c.occup_title, a.gender, avg(b.ratings)
from users a inner join ratings b
on a.user_id = b.user_id
inner join occup_dict c
on a.occupation = c.occup_id
group by c.occup_title, a.gender;

各个年龄段最喜欢的电影
select d.age_min, d.age_max, c.title, b.ratings
from users a inner join ratings b
on a.user_id = b.user_id
inner join movies c
on c.movie_id = b.movie_id
inner join age_dict d
on d.age_id = a.age
group by d.age_min, d.age_max
order by b.ratings desc
limit 0,1;

select a.gender, c.title, avg(b.ratings)
from users a inner join ratings b
on a.user_id = b.user_id
inner join movies c
on c.movie_id = b.movie_id
group by a.gender, c.title
order by c.title

select * from temp_result
where (年龄段, 平均评分, rownum) in
(
select a.年龄段, a.平均评分, max(a.rownum) from
(
select rownum, 年龄段, 平均评分, title
from temp_result
where (年龄段, 平均评分) in (
select 年龄段, max(平均评分)
from temp_result
group by 年龄段
)
) a
group by a.年龄段, a.平均评分
)