1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
| NumPy: 数组和⽮量计算 NumPy之于数值计算特别重要的原因之⼀,是因为它可以⾼效处理⼤数组的数据。 NumPy是在⼀个连续的内存块中存储数据,独⽴于其他Python内置对象。NumPy的C语⾔编 写的算法库可以操作内存,⽽不必进⾏类型检查或其它前期⼯作。⽐起Python的内置序列, NumPy数组使⽤的内存更少。 NumPy可以在整个数组上执⾏复杂的计算,⽽不需要Python的for循环。 性能对⽐ 基于NumPy的算法要⽐纯Python快10到100倍(甚⾄更快),并且使⽤的内存更少。 In [7]: import numpy as np In [8]: %timeit my_arr = np.arange(1000000) In [9]: %timeit my_list = list(range(1000000)) NumPy的ndarray:⼀种多维数组对象 NumPy最重要的⼀个特点就是其N维数组对象(即ndarray), 该对象是⼀个快速⽽灵活的⼤ 数据集容器。你可以利⽤这种数组对整块数据执⾏⼀些数学运算,其语法跟标量元素之间的运 算⼀样。 In [12]: import numpy as np In [13]: data = np.random.randn(2, 3) In [14]: data Out[14]: array([[-0.2047, 0.4789, -0.5194], [-0.5557, 1.9658, 1.3934]]) In [15]: data * 10 Out[15]: array([[ -2.0471, 4.7894, -5.1944], [ -5.5573, 19.6578, 13.9341]]) In [16]: data + data Out[16]: array([[-0.4094, 0.9579, -1.0389], [-1.1115, 3.9316, 2.7868]]) ndarray是⼀个通⽤的同构数据多维容器,所有元素必须是相同类型的 # 取维度⼤⼩ data.shape # 取数据数据类型 data.dtype 创建ndarray In [19]: data1 = [6, 7.5, 8, 0, 1] In [20]: arr1 = np.array(data1) In [21]: arr1 Out[21]: array([ 6. , 7.5, 8. , 0. , 1. ]) 嵌套序列(⽐如由⼀组等⻓列表组成的列表)将会被转换为⼀个多维数组 In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]] In [23]: arr2 = np.array(data2) In [24]: arr2 Out[24]: array([[1, 2, 3, 4], [5, 6, 7, 8]]) # 取维度 arr2.ndim arr2.shape arr2.dtype zeros和ones分别可以创建指定⻓度或形状的全0或全1数组。empty可以创建⼀个没有任何具 体值的数组 In [29]: np.zeros(10) Out[29]: array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) In [30]: np.zeros((3, 6)) Out[30]: array([[ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.]]) In [31]: np.empty((2, 3, 2)) np.ones(10) np.empty返回的都是⼀些未初始化的垃圾值 In [32]: np.arange(15) Out[32]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) ndarray的数据类型 In [33]: arr1 = np.array([1, 2, 3], dtype=np.float64) In [34]: arr2 = np.array([1, 2, 3], dtype=np.int32) In [35]: arr1.dtype Out[35]: dtype('float64') In [36]: arr2.dtype Out[36]: dtype('int32') astype⽅法明确地将⼀个数组从⼀个dtype转换成另⼀个dtype In [37]: arr = np.array([1, 2, 3, 4, 5]) In [38]: arr.dtype Out[38]: dtype('int64') In [39]: float_arr = arr.astype(np.float64) In [40]: float_arr.dtype Out[40]: dtype('float64') 将浮点数转换成整数,则⼩数部分将会被截取删除 In [41]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1]) In [42]: arr Out[42]: array([ 3.7, -1.2, -2.6, 0.5, 12.9, 10.1]) In [43]: arr.astype(np.int32) Out[43]: array([ 3, -1, -2, 0, 12, 10], dtype=int32) 调⽤astype总会创建⼀个新的数组(⼀个数据的备份) NumPy数组的运算 不⽤编写循环即可对数据执⾏批量运算。NumPy⽤户称其为⽮量化(vectorization)。⼤⼩相 等的数组之间的任何算术运算都会将运算应⽤到元素级 In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]]) In [52]: arr Out[52]: array([[ 1., 2., 3.], [ 4., 5., 6.]]) In [53]: arr * arr Out[53]: array([[ 1., 4., 9.], [ 16., 25., 36.]]) In [54]: arr - arr Out[54]: array([[ 0., 0., 0.], [ 0., 0., 0.]]) 数组与标量的算术运算会将标量值传播到各个元素 In [55]: 1 / arr Out[55]: array([[ 1. , 0.5 , 0.3333], [ 0.25 , 0.2 , 0.1667]]) In [56]: arr * 0.5 ⼤⼩相同的数组之间的⽐较会⽣成布尔值数组 In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]]) In [58]: arr2 Out[58]: array([[ 0., 4., 1.], [ 7., 2., 12.]]) In [59]: arr2 > arr Out[59]: array([[False, True, False], [ True, False, True]], dtype=bool) 基本的索引和切⽚ In [60]: arr = np.arange(10) In [61]: arr Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) In [62]: arr[5] Out[62]: 5 In [63]: arr[5:8] Out[63]: array([5, 6, 7]) In [64]: arr[5:8] = 12 In [65]: arr Out[65]: array([ 0, 1, 2, 3, 4, 12, 12, 12, 8, 9]) In [66]: arr_slice = arr[5:8] In [67]: arr_slice Out[67]: array([12, 12, 12]) In [68]: arr_slice[1] = 12345 In [69]: arr Out[69]: array([ 0, 1, 2, 3, 4, 12, 12345, 12, 8, 9]) 切⽚[ : ]会给数组中的所有值赋值 In [70]: arr_slice[:] = 64 In [71]: arr Out[71]: array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9]) ndarray切⽚的⼀份副本⽽⾮视图,就需要明确地进⾏复制操作,例如arr[5:8].copy() In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) In [73]: arr2d[2] Out[73]: array([7, 8, 9]) # 两种⽅式⼀样 In [74]: arr2d[0][2] Out[74]: 3 In [75]: arr2d[0, 2] Out[75]: 3 多维数组中,如果省略了后⾯的索引,则返回对象会是⼀个维度低⼀点的ndarray In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) In [77]: arr3d Out[77]: array([[[ 1, 2, 3], [ 4, 5, 6]], [[ 7, 8, 9], [10, 11, 12]]]) arr3d.ndim In [78]: arr3d[0] Out[78]: array([[1, 2, 3], [4, 5, 6]]) arr3d[0].ndim 标量值和数组都可以被赋值给arr3d[0] In [79]: old_values = arr3d[0].copy() In [80]: arr3d[0] = 42 In [81]: arr3d Out[81]: array([[[42, 42, 42], [42, 42, 42]], [[ 7, 8, 9], [10, 11, 12]]]) In [82]: arr3d[0] = old_values In [83]: arr3d Out[83]: array([[[ 1, 2, 3], [ 4, 5, 6]], [[ 7, 8, 9], [10, 11, 12]]]) In [84]: arr3d[1, 0] Out[84]: array([7, 8, 9]) 切⽚索引 In [90]: arr2d Out[90]: array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) In [91]: arr2d[:2] Out[91]: array([[1, 2, 3], [4, 5, 6]]) ⼀次传⼊多个切⽚ In [92]: arr2d[:2, 1:] Out[92]: array([[2, 3], [5, 6]]) 将整数索引和切⽚混合 选取第⼆⾏的前两列 In [93]: arr2d[1, :2] Out[93]: array([4, 5]) 选择第三列的前两⾏ In [94]: arr2d[:2, 2] Out[94]: array([3, 6]) “只有冒号”表示选取整个轴 In [95]: arr2d[:, :1] Out[95]: array([[1], [4], [7]]) In [96]: arr2d[:2, 1:] = 0 In [97]: arr2d Out[97]: array([[1, 0, 0], [4, 0, 0], [7, 8, 9]]) 布尔型索引 假设我们有⼀个⽤于存储数据的数组以及⼀个存储姓名的数组(含有重复项) In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe']) In [99]: data = np.random.randn(7, 4) In [100]: names Out[100]: array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'], dtype='<U4') In [101]: data Out[101]: array([[ 0.0929, 0.2817, 0.769 , 1.2464], [ 1.0072, -1.2962, 0.275 , 0.2289], [ 1.3529, 0.8864, -2.0016, -0.3718], [ 1.669 , -0.4386, -0.5397, 0.477 ], [ 3.2489, -1.0212, -0.5771, 0.1241], [ 0.3026, 0.5238, 0.0009, 1.3438], [-0.7135, -0.8312, -2.3702, -1.8608]]) In [102]: names == 'Bob' Out[102]: array([ True, False, False, True, False, False, False], dtype=bool) In [103]: data[names == 'Bob'] Out[103]: array([[ 0.0929, 0.2817, 0.769 , 1.2464], [ 1.669 , -0.4386, -0.5397, 0.477 ]]) In [104]: data[names == 'Bob', 2:] Out[104]: array([[ 0.769 , 1.2464], [-0.5397, 0.477 ]]) In [105]: data[names == 'Bob', 3] Out[105]: array([ 1.2464, 0.477 ]) 要选择除”bob”以外的其他值,既可以使⽤不等于符号(!=),也可以通过~对条件进⾏否定 In [106]: names != 'Bob' Out[106]: array([False, True, True, False, True, True, True], dtype=bool) In [107]: data[~(names == 'Bob')] Out[107]: array([[ 1.0072, -1.2962, 0.275 , 0.2289], [ 1.3529, 0.8864, -2.0016, -0.3718], [ 3.2489, -1.0212, -0.5771, 0.1241], [ 0.3026, 0.5238, 0.0009, 1.3438], [-0.7135, -0.8312, -2.3702, -1.8608]]) In [110]: mask = (names == 'Bob') | (names == 'Will') In [111]: mask Out[111]: array([ True, False, True, True, True, False, False], dtype=bool) In [112]: data[mask] Out[112]: array([[ 0.0929, 0.2817, 0.769 , 1.2464], [ 1.3529, 0.8864, -2.0016, -0.3718], [ 1.669 , -0.4386, -0.5397, 0.477 ], [ 3.2489, -1.0212, -0.5771, 0.1241]]) In [113]: data[data < 0] = 0 In [114]: data Out[114]: array([[ 0.0929, 0.2817, 0.769 , 1.2464], [ 1.0072, 0. , 0.275 , 0.2289], [ 1.3529, 0.8864, 0. , 0. ], [ 1.669 , 0. , 0. , 0.477 ], [ 3.2489, 0. , 0. , 0.1241], [ 0.3026, 0.5238, 0.0009, 1.3438], [ 0. , 0. , 0. , 0. ]]) In [115]: data[names != 'Joe'] = 7 In [116]: data Out[116]: array([[ 7. , 7. , 7. , 7. ], [ 1.0072, 0. , 0.275 , 0.2289], [ 7. , 7. , 7. , 7. ], [ 7. , 7. , 7. , 7. ], [ 7. , 7. , 7. , 7. ], [ 0.3026, 0.5238, 0.0009, 1.3438], [ 0. , 0. , 0. , 0. ]]) 花式索引 花式索引(Fancy indexing)是⼀个NumPy术语,它指的是利⽤整数数组进⾏索引 In [117]: arr = np.empty((8, 4)) In [118]: for i in range(8): .....: arr[i] = i In [119]: arr Out[119]: array([[ 0., 0., 0., 0.], [ 1., 1., 1., 1.], [ 2., 2., 2., 2.], [ 3., 3., 3., 3.], [ 4., 4., 4., 4.], [ 5., 5., 5., 5.], [ 6., 6., 6., 6.], [ 7., 7., 7., 7.]]) 为了以特定顺序选取⾏⼦集,只需传⼊⼀个⽤于指定顺序的整数列表或ndarray即可 In [120]: arr[[4, 3, 0, 6]] Out[120]: array([[ 4., 4., 4., 4.], [ 3., 3., 3., 3.], [ 0., 0., 0., 0.], [ 6., 6., 6., 6.]]) 使⽤负数索引将会从末尾开始选取⾏ In [121]: arr[[-3, -5, -7]] Out[121]: array([[ 5., 5., 5., 5.], [ 3., 3., 3., 3.], [ 1., 1., 1., 1.]]) ⼀次传⼊多个索引数组会有⼀点特别。它返回的是⼀个⼀维数组,其中的元素对应各个索引元 组 In [122]: arr = np.arange(32).reshape((8, 4)) In [123]: arr Out[123]: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23], [24, 25, 26, 27], [28, 29, 30, 31]]) # 最终选出的是元素(1,0)、(5,3)、(7,1)和(2,2) In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]] Out[124]: array([ 4, 23, 29, 10]) In [125]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]] Out[125]: array([[ 4, 7, 5, 6], [20, 23, 21, 22], [28, 31, 29, 30], [ 8, 11, 9, 10]]) 数组转置和轴对换 转置是重塑的⼀种特殊形式,它返回的是源数据的视图(不会进⾏任何复制操作) In [126]: arr = np.arange(15).reshape((3, 5)) In [127]: arr Out[127]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) In [128]: arr.T Out[128]: array([[ 0, 5, 10], [ 1, 6, 11], [ 2, 7, 12], [ 3, 8, 13], [ 4, 9, 14]]) 利⽤np.dot计算矩阵内积 In [129]: arr = np.random.randn(6, 3) In [130]: arr Out[130]: array([[-0.8608, 0.5601, -1.2659], [ 0.1198, -1.0635, 0.3329], [-2.3594, -0.1995, -1.542 ], [-0.9707, -1.307 , 0.2863], [ 0.378 , -0.7539, 0.3313], [ 1.3497, 0.0699, 0.2467]]) In [131]: np.dot(arr.T, arr) Out[131]: array([[ 9.2291, 0.9394, 4.948 ], [ 0.9394, 3.7662, -1.3622], [ 4.948 , -1.3622, 4.3437]]) 对于⾼维数组,transpose需要得到⼀个由轴编号组成的元组才能对这些轴进⾏转置 In [132]: arr = np.arange(16).reshape((2, 2, 4)) In [133]: arr Out[133]: array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]]]) In [134]: arr.transpose((1, 0, 2)) Out[134]: array([[[ 0, 1, 2, 3], [ 8, 9, 10, 11]], [[ 4, 5, 6, 7], [12, 13, 14, 15]]]) In [135]: arr Out[135]: array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]]]) In [136]: arr.swapaxes(1, 2) Out[136]: array([[[ 0, 4], [ 1, 5], [ 2, 6], [ 3, 7]], [[ 8, 12], [ 9, 13], [10, 14], [11, 15]]]) arr.swapaxes(0, 1) 通⽤函数(ufunc):快速的元素级数组函数 In [137]: arr = np.arange(10) In [138]: arr Out[138]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) In [139]: np.sqrt(arr) Out[139]: array([ 0. , 1. , 1.4142, 1.7321, 2. , 2.2361, 2.4495, 2.6458, 2.8284, 3. ]) In [140]: np.exp(arr) Out[140]: array([ 1. , 2.7183, 7.3891, 20.0855, 54.5982, 148.4132, 403.4288, 1096.6332, 2980.958 , 8103.0839]) add或maximum接受2个数组(因此也叫⼆元(binary)ufunc),并返回⼀个结果数组 In [141]: x = np.random.randn(8) In [142]: y = np.random.randn(8) In [143]: x Out[143]: array([-0.0119, 1.0048, 1.3272, -0.9193, -1.5491, 0.0222, 0.7584, -0.6605]) In [144]: y Out[144]: array([ 0.8626, -0.01 , 0.05 , 0.6702, 0.853 , -0.9559, -0.0235, -2.3042]) In [145]: np.maximum(x, y) Out[145]: array([ 0.8626, 1.0048, 1.3272, 0.6702, 0.853 , 0.0222, 0.7584, -0.6605]) 返回浮点数数组的⼩数和整数部分 In [146]: arr = np.random.randn(7) * 5 In [147]: arr Out[147]: array([-3.2623, -6.0915, -6.663 , 5.3731, 3.6182, 3.45 , 5.0077]) In [148]: remainder, whole_part = np.modf(arr) In [149]: remainder Out[149]: array([-0.2623, -0.0915, -0.663 , 0.3731, 0.6182, 0.45 , 0.0077]) In [150]: whole_part Out[150]: array([-3., -6., -6., 5., 3., 3., 5.]) 利⽤数组进⾏数据处理 ⽤数组表达式代替循环的做法,通常被称为⽮量化。⼀般来说,⽮量化数组运算要⽐等价的纯 Python⽅式快上⼀两个数量级(甚⾄更多)。 假设我们想要在⼀组值(⽹格型)上计算函数sqrt(x^2+y^2) np.meshgrid函数接受两个⼀维数组,并产⽣两个⼆维矩阵(对应于两个数组中所有的(x,y) 对) In [155]: points = np.arange(-5, 5, 0.01) # 1000 equally spaced points In [156]: xs, ys = np.meshgrid(points, points) In [157]: ys Out[157]: array([[-5. , -5. , -5. , ..., -5. , -5. , -5. ], [-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99], [-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98], ..., [ 4.97, 4.97, 4.97, ..., 4.97, 4.97, 4.97], [ 4.98, 4.98, 4.98, ..., 4.98, 4.98, 4.98], [ 4.99, 4.99, 4.99, ..., 4.99, 4.99, 4.99]]) In [158]: z = np.sqrt(xs ** 2 + ys ** 2) In [159]: z Out[159]: array([[ 7.0711, 7.064 , 7.0569, ..., 7.0499, 7.0569, 7.064 ], [ 7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569], [ 7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499], ..., [ 7.0499, 7.0428, 7.0357, ..., 7.0286, 7.0357, 7.0428], [ 7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499], [ 7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569]]) matplotlib创建了这个⼆维数组的可视化 In [160]: import matplotlib.pyplot as plt In [161]: plt.imshow(z, cmap=plt.cm.gray); plt.colorbar() Out[161]: <matplotlib.colorbar.Colorbar at 0x7f715e3fa630> In [162]: plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values") Out[162]: <matplotlib.text.Text at 0x7f715d2de748> plt.show() 将条件逻辑表述为数组运算 In [165]: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5]) In [166]: yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5]) In [167]: cond = np.array([True, False, True, True, False]) 当cond中的值为True时,选取xarr的值,否则从yarr中选取 In [170]: result = np.where(cond, xarr, yarr) In [171]: result Out[171]: array([ 1.1, 2.2, 1.3, 1.4, 2.5]) 假设有⼀个由随机数据组成的矩阵,你希望将所有正值替换为2,将所有负值替换为-2 In [172]: arr = np.random.randn(4, 4) In [173]: arr Out[173]: array([[-0.5031, -0.6223, -0.9212, -0.7262], [ 0.2229, 0.0513, -1.1577, 0.8167], [ 0.4336, 1.0107, 1.8249, -0.9975], [ 0.8506, -0.1316, 0.9124, 0.1882]]) In [174]: arr > 0 Out[174]: array([[False, False, False, False], [ True, True, False, True], [ True, True, True, False], [ True, False, True, True]], dtype=bool) In [175]: np.where(arr > 0, 2, -2) Out[175]: array([[-2, -2, -2, -2], [ 2, 2, -2, 2], [ 2, 2, 2, -2], [ 2, -2, 2, 2]]) ⽤常数2替换arr中所有正的值 In [176]: np.where(arr > 0, 2, arr) Out[176]: array([[-0.5031, -0.6223, -0.9212, -0.7262], [ 2. , 2. , -1.1577, 2. ], [ 2. , 2. , 2. , -0.9975], [ 2. , -0.1316, 2. , 2. ]]) 数学和统计⽅法 可以通过数组上的⼀组数学函数对整个数组或某个轴向的数据进⾏统计计算。sum、mean以 及标准差std等聚合计算(aggregation,通常叫做约简(reduction)) In [177]: arr = np.random.randn(5, 4) In [178]: arr Out[178]: array([[ 2.1695, -0.1149, 2.0037, 0.0296], [ 0.7953, 0.1181, -0.7485, 0.585 ], [ 0.1527, -1.5657, -0.5625, -0.0327], [-0.929 , -0.4826, -0.0363, 1.0954], [ 0.9809, -0.5895, 1.5817, -0.5287]]) In [179]: arr.mean() Out[179]: 0.19607051119998253 In [180]: np.mean(arr) Out[180]: 0.19607051119998253 In [181]: arr.sum() Out[181]: 3.9214102239996507 arr.mean(1)是“计算⾏的平均值”,arr.sum(0)是“计算每列的和” In [182]: arr.mean(axis=1) Out[182]: array([ 1.022 , 0.1875, -0.502 , -0.0881, 0.3611]) In [183]: arr.sum(axis=0) Out[183]: array([ 3.1693, -2.6345, 2.2381, 1.1486]) In [184]: arr = np.array([0, 1, 2, 3, 4, 5, 6, 7]) In [185]: arr.cumsum() Out[185]: array([ 0, 1, 3, 6, 10, 15, 21, 28]) In [186]: arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) In [187]: arr Out[187]: array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) # 所有元素的累积和 In [188]: arr.cumsum(axis=0) Out[188]: array([[ 0, 1, 2], [ 3, 5, 7], [ 9, 12, 15]]) # 所有元素的累积积 In [189]: arr.cumprod(axis=1) Out[189]: array([[ 0, 0, 0], [ 3, 12, 60], [ 6, 42, 336]]) ⽤于布尔型数组的⽅法 In [190]: arr = np.random.randn(100) In [191]: (arr > 0).sum() Out[191]: 42 any⽤于测试数组中是否存在⼀个或多个True,⽽all则检查数组中所有值是否都是True, 这两个 ⽅法也能⽤于⾮布尔型数组,所有⾮0元素将会被当做True In [192]: bools = np.array([False, False, True, False]) In [193]: bools.any() Out[193]: True In [194]: bools.all() Out[194]: False 排序 In [195]: arr = np.random.randn(6) In [196]: arr Out[196]: array([ 0.6095, -0.4938, 1.24 , -0.1357, 1.43 , -0.8469]) In [197]: arr.sort() In [198]: arr Out[198]: array([-0.8469, -0.4938, -0.1357, 0.6095, 1.24 , 1.43 ]) 多维数组可以在任何⼀个轴向上进⾏排序 In [199]: arr = np.random.randn(5, 3) In [200]: arr Out[200]: array([[ 0.6033, 1.2636, -0.2555], [-0.4457, 0.4684, -0.9616], [-1.8245, 0.6254, 1.0229], [ 1.1074, 0.0909, -0.3501], [ 0.218 , -0.8948, -1.7415]]) In [201]: arr.sort(1) In [202]: arr Out[202]: array([[-0.2555, 0.6033, 1.2636], [-0.9616, -0.4457, 0.4684], [-1.8245, 0.6254, 1.0229], [-0.3501, 0.0909, 1.1074], [-1.7415, -0.8948, 0.218 ]]) 顶级⽅法np.sort返回的是数组的已排序副本,⽽就地排序则会修改数组本身 唯⼀化以及其它的集合逻辑 找出数组中的唯⼀值并返回已排序的结果 In [206]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe']) In [207]: np.unique(names) Out[207]: array(['Bob', 'Joe', 'Will'], dtype='<U4') In [208]: ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4]) In [209]: np.unique(ints) Out[209]: array([1, 2, 3, 4]) 函数np.in1d⽤于测试⼀个数组中的值在另⼀个数组中的成员资格,返回⼀个布尔型数组 In [211]: values = np.array([6, 0, 0, 3, 2, 5, 6]) In [212]: np.in1d(values, [2, 3, 6]) Out[212]: array([ True, False, False, True, True, False, True], dtype=bool) ⽤于数组的⽂件输⼊输出 NumPy的内置⼆进制格式读写 np.save和np.load是读写磁盘数组数据的两个主要函数。默认情况下,数组是以未压缩的原始 ⼆进制格式保存在扩展名为.npy的⽂件中的 In [213]: arr = np.arange(10) In [214]: np.save('some_array', arr) In [215]: np.load('some_array.npy') Out[215]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 通过np.savez可以将多个数组保存到⼀个未压缩⽂件中 In [216]: np.savez('array_archive.npz', a=arr, b=arr) In [217]: arch = np.load('array_archive.npz') In [218]: arch['b'] Out[218]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 将数据压缩,可以使⽤numpy.savez_compressed In [219]: np.savez_compressed('arrays_compressed.npz', a=arr, b=arr) 线性代数 矩阵乘法的dot函数 In [223]: x = np.array([[1., 2., 3.], [4., 5., 6.]]) In [224]: y = np.array([[6., 23.], [-1, 7], [8, 9]]) In [225]: x Out[225]: array([[ 1., 2., 3.], [ 4., 5., 6.]]) In [226]: y Out[226]: array([[ 6., 23.], [ -1., 7.], [ 8., 9.]]) In [227]: x.dot(y) Out[227]: array([[ 28., 64.], [ 67., 181.]]) ⼀个⼆维数组跟⼀个⼤⼩合适的⼀维数组的矩阵点积运算之后将会得到⼀个⼀维数组 In [229]: np.dot(x, np.ones(3)) Out[229]: array([ 6., 15.]) @符也可以⽤作中缀运算符,进⾏矩阵乘法 In [230]: x @ np.ones(3) Out[230]: array([ 6., 15.]) 伪随机数⽣成 ⽤normal来得到⼀个标准正态分布的4×4样本数组 In [238]: samples = np.random.normal(size=(4, 4)) In [239]: samples Out[239]: array([[ 0.5732, 0.1933, 0.4429, 1.2796], [ 0.575 , 0.4339, -0.7658, -1.237 ], [-0.5367, 1.8545, -0.92 , -0.1082], [ 0.1525, 0.9435, -1.0953, -0.144 ]]) Python内置的random模块则只能⼀次⽣成⼀个样本值。从下⾯的测试结果中可以看出,如果 需要产⽣⼤量样本值,numpy.random快了不⽌⼀个数量级 In [240]: from random import normalvariate In [241]: N = 1000000 In [242]: %timeit samples = [normalvariate(0, 1) for _ in range(N)] 1.77 s +- 126 ms per loop (mean +- std. dev. of 7 runs, 1 loop each) In [243]: %timeit np.random.normal(size=N) 61.7 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 10 loops each) numpy.random的数据⽣成函数使⽤了全局的随机种⼦。要避免全局状态,你可以使⽤ numpy.random.RandomState,创建⼀个与其它隔离的随机数⽣成器 In [245]: rng = np.random.RandomState(1234) In [246]: rng.randn(10) Out[246]: array([ 0.4714, -1.191 , 1.4327, -0.3127, -0.7206, 0.8872, 0.8596, -0.6365, 0.0157, -2.2427]) 示例:随机漫步 ⽤np.random模块⼀次性随机产⽣1000个“掷硬币”结果(即两个数中任选⼀个),将其分别设 置为1或-1,然后计算累计和 In [251]: nsteps = 1000 In [252]: draws = np.random.randint(0, 2, size=nsteps) In [253]: steps = np.where(draws > 0, 1, -1) In [254]: walk = steps.cumsum() In [255]: walk.min() Out[255]: -3 In [256]: walk.max() Out[256]: 31 我们想要知道本次随机漫步需要多久才能距离初始0点⾄少10步远(任⼀⽅向均可) In [257]: (np.abs(walk) >= 10).argmax() Out[257]: 37
|